
Vol.:(0123456789)1 3

Cellular and Molecular Life Sciences 
https://doi.org/10.1007/s00018-019-03348-2

REVIEW

Recent advances in the pathogenesis of hereditary fructose 
intolerance: implications for its treatment and the understanding 
of fructose‑induced non‑alcoholic fatty liver disease

Amée M. Buziau1,2,3 · Casper G. Schalkwijk2,3 · Coen D.A. Stehouwer2,3,4 · Dean R. Tolan5  · 
Martijn C.G.J. Brouwers1,2,3

Received: 26 April 2019 / Revised: 2 October 2019 / Accepted: 16 October 2019 
© Springer Nature Switzerland AG 2019

Abstract
Hereditary fructose intolerance (HFI) is a rare inborn disease characterized by a deficiency in aldolase B, which catalyzes 
the cleavage of fructose 1,6-bisphosphate and fructose 1-phosphate (Fru 1P) to triose molecules. In patients with HFI, inges-
tion of fructose results in accumulation of Fru 1P and depletion of ATP, which are believed to cause symptoms, such as 
nausea, vomiting, hypoglycemia, and liver and kidney failure. These sequelae can be prevented by a fructose-restricted diet. 
Recent studies in aldolase B-deficient mice and HFI patients have provided more insight into the pathogenesis of HFI, in 
particular the liver phenotype. Both aldolase B-deficient mice (fed a very low fructose diet) and HFI patients (treated with a 
fructose-restricted diet) displayed greater intrahepatic fat content when compared to controls. The liver phenotype in aldolase 
B-deficient mice was prevented by reduction in intrahepatic Fru 1P concentrations by crossing these mice with mice deficient 
for ketohexokinase, the enzyme that catalyzes the synthesis of Fru 1P. These new findings not only provide a potential novel 
treatment for HFI, but lend insight into the pathogenesis of fructose-induced non-alcoholic fatty liver disease (NAFLD), 
which has raised to epidemic proportions in Western society. This narrative review summarizes the most recent advances 
in the pathogenesis of HFI and discusses the implications for the understanding and treatment of fructose-induced NAFLD.

Keywords Hereditary fructose intolerance · Glucokinase regulatory protein · Ketohexokinase · Fructose · De novo 
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Introduction

Hereditary fructose intolerance (HFI; OMIM 22960), an 
inborn error of fructose metabolism, was first reported in 
1956 by Chambers and Pratt [1]. A 24-year-old woman 
was admitted for evaluation of faintness, abdominal pain, 
and nausea upon fruit or sugar ingestion. The physicians 
subjected her to systematic, single-blinded exposure to a 
variety of oral sugars. Administration of solely fructose and 
sucrose, not glucose, galactose or lactose, provoked symp-
toms of nausea in a dose-dependent manner. Based on these 
findings, the patient was diagnosed with ‘idiosyncrasy to 
fructose’ [1]. Six years later, Hers and Joassin identified the 
enzymatic defect of HFI in two liver biopsy specimens as a 
‘functional deficiency of fructose-1-aldolase activity,’ i.e., 
aldolase B [2].

Recent experimental and clinical studies have provided 
more insight into the pathogenesis of HFI, in particular its 
liver phenotype. In the present narrative review, we will give 
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an overview of these studies and subsequently elaborate on 
the implications, not only for the treatment of HFI, but also 
for the current epidemic of fructose overconsumption.

Background

Clinical manifestations

The first symptoms of HFI appear when a neonate is exposed 
to fructose-containing infant formulas [3] or when fructose-
containing foods, such as fruits and vegetables, are intro-
duced to young infants [4, 5]. Signs of acute intoxication are 
vomiting, abdominal pain, lactic acidosis, hyperuricemia, 
hypoglycemia, and acute liver failure. Persistent fructose 
ingestion can lead to failure to thrive, liver disease (i.e., 
hepatic steatosis, fibrosis, and cirrhosis), signs of proximal 
renal tubular dysfunction (i.e., Fanconi syndrome), and 
eventually death. These sequelae can be prevented when 
treated with a fructose-restricted diet. Further, since fruc-
tose can also be synthesized endogenously from sorbitol (via 
the polyol pathway, Fig. 1), HFI patients additionally should 
avoid sorbitol-containing food products and high levels of 
high-glycemic foods [4, 5]. When adhering to these dietary 
restrictions, the prognosis of HFI appears excellent, although 
little is known about the long-term pathology of adults with 
HFI [6–9].

Genetics and epidemiology

The human gene for aldolase B (ALDOB) has been mapped 
to chromosome 9q22.3 [10, 11]. At present, over 40 causa-
tive mutations of the ALDOB gene have been documented, 
of which c.448G > C (p.A149P), c.524C > A (p.A174D), 
c.357delAAAC (∆4E4), and c.1005C > G (p.N334  K) 
account for 59% and 86% of HFI mutations in North Amer-
icans and Europeans, respectively [12–17]. Based on the 
carrier frequency of the most common mutations in neo-
nates, it has been estimated that the incidence of HFI is 
1:18,000–20,000 in live births [18, 19].

Metabolic derangements

The metabolic derangements of aldolase B deficiency have 
been the scope of previous, high-quality review papers [9, 
20, 21]. Briefly, fructose-1,6-bisphosphate aldolase (aldo-
lase; EC 4.1.2.13) is responsible for the reversible conver-
sion of fructose 1,6-bisphosphate (Fru 1,6-P2) or fructose 
1-phosphate (Fru 1P) to the triose phosphate dihydroxy-
acetone phosphate (DHAP) and either glyceraldehyde 
3-phosphate (G3P) or glyceraldehyde, respectively, which 
are intermediates of the glycolytic/gluconeogenic pathway 
(Fig. 1) [22]. At least three aldolase isozymes (A, B, and C) 

have been described which differ in tissue expression and 
activity for the substrates Fru 1,6-P2 and Fru 1P. Aldolase 
B is expressed in the liver, kidney, and small intestine and 
has activity for both Fru 1,6-P2 and Fru 1P. This is in con-
trast to both aldolase A (predominantly expressed in skeletal 
muscle) and aldolase C (predominantly expressed in brain 
and smooth muscle) which have the highest efficiencies for 
Fru 1,6-P2 as a substrate [23, 24], although aldolase C may 
perform fructose metabolism in the brain [25].

Liver biopsies of HFI patients show substantially 
reduced Fru 1P aldolase activity (0–15%), but preserved 
Fru 1,6-P2 aldolase activity (5–30%) leading to a marked 

Fig. 1  Metabolic consequences of aldolase B deficiency in the liver 
after an oral fructose load. In physiological states, fructose is rapidly 
phosphorylated by KHK and subsequently converted by aldolase B 
to trioses (DHAP and GAH) that enter the glycolytic/gluconeogenic 
pathways. Aldolase B also catalyzes the conversion of Fru 1,6-P2 to 
triose phosphates (DHAP and G3P). In aldolase B deficiency, the 
catabolism of Fru 1P is impaired, and the metabolism of Fru 1,6-
P2 is blocked (red bar). Accumulation of Fru 1P has several acute 
downstream effects denoted in yellow circled letters as follows: (1) 
depletion of intracellular inorganic phosphate  (Pi) and ATP, and con-
sequently formation of IMP and urate (A); (2) impairment of glycog-
enolysis (by inhibition of GP and loss of  Pi) (B) and gluconeogen-
esis (by inhibition of G6PI) (C), resulting in hypoglycemia; and (3) 
stimulation of PK activity that—in combination with an impaired 
gluconeogenesis—promotes hyperlactatemia (D). Further, fructose, 
which can be produced endogenously from sorbitol (via the polyol 
pathway), may contribute to the accumulation of Fru 1P (E). Blue 
cross indicates blocked pathway as a consequence of Fru 1P accu-
mulation. Dashed arrow indicates multiple intermediate enzymatic 
steps that have not been visualized for simplicity purposes. ADP 
adenosine diphosphate, AMP adenosine monophosphate, ATP adeno-
sine triphosphate, DHAP dihydroxyacetone phosphate, Fru 6P fruc-
tose 6-phosphate, Fru 1P fructose 1-phosphate, Fru 1,6-P2 fructose 
1,6-biphosphate, G3P glyceraldehyde 3-phosphate, Glc 6P glucose 
6-phosphate, G6PI glucose-6-phosphate isomerase, GAH glyceral-
dehyde, GP glycogen phosphorylase, IMP inosine monophosphate, 
KHK ketohexokinase, PEP phosphoenolpyruvate, Pi inorganic phos-
phate, PK pyruvate kinase



Recent advances in the pathogenesis of hereditary fructose intolerance: implications for…

1 3

increase in the ratio of Fru 1,6-P2 to Fru 1P activities, 
which was used as a diagnostic before the introduction 
of genetic testing [26]. This remains the only definitive 
diagnostic test as so many HFI-causing mutations remain 
unknown or variants found by DNA testing have unknown 
consequences [15]. The relatively preserved Fru 1,6-P2 
aldolase activity could theoretically be explained by resid-
ual aldolase A activity in the liver that compensates for the 
defect in aldolase B activity for the substrate Fru 1,6-P2, 
but not for Fru 1P [20], or, alternatively, aldolase A activ-
ity in erythrocytes, which are also present in liver lysates.

As a consequence of the catalytic deficiency of aldo-
lase B, a fructose load in HFI patients results in the rapid 
accumulation of Fru 1P and, hence, intracellular inor-
ganic phosphate (Pi) and adenosine triphosphate (ATP) 
depletion [27, 28]. Reduced  Pi concentrations lead to an 
increased rate of degradation of adenosine 5’-monophos-
phate (AMP) [29]. As a result, adenosine deaminase 
and xanthine oxidase activities are increased and ino-
sine monophosphate (IMP) and urate are rapidly formed 
(Fig. 1) [29]. The specific inhibition of aldolase B by the 
increased IMP further accentuates the increase in Fru 1P 
[28].

High levels of intrahepatic Fru 1P—in combination 
with the loss of  Pi—inhibit glycogenolysis by impairment 
of glycogen phosphorylase (GP) [30–33]. This is also 
illustrated by the failure of exogenous glucagon to correct 
for the fructose-induced hypoglycemia in HFI patients [34, 
35]. Further, high levels of Fru 1P impair gluconeogenesis 
by competitive inhibition of glucose-6-phosphate isomer-
ase (G6PI) [36, 37]. The rate of gluconeogenesis may also 
depend on the intrahepatic concentration of ATP [38], 
which is low in case of HFI following fructose ingestion. 
The impaired gluconeogenesis is evidenced by the inabil-
ity of dihydroxyacetone administration (which enters the 
gluconeogenic pathway) to prevent fructose-induced hypo-
glycemia in HFI patients [35]. In conclusion, fructose-
induced, impaired glycogenolysis and gluconeogenesis 
both result in a decreased hepatic glucose production and, 
consequently, the rapid development of hypoglycemia. Of 
note, in the absence of fructose, gluconeogenesis is not 
impaired in HFI [39].

In addition, an impaired gluconeogenesis together with 
Fru-1P-induced activation of pyruvate kinase (PK) pro-
motes accumulation of lactate and, consequently, hyper-
lactatemia [40, 41] (Fig.  1). Notably, these metabolic 
defects do not only occur after oral intake of fructose, but 
also upon sorbitol consumption [4, 42]. This is due to the 
oxidation of sorbitol to fructose via the polyol pathway 
(Fig. 1). This pathway of endogenous fructose production 
can be activated through dehydration and hyperosmolarity 
as well as high-glycemic foods [43–46].

Recent advances from animal studies

The phenotype of aldolase B knockout mice 
resembles the human HFI phenotype

Recent work has demonstrated that aldolase B knockout 
(ALDOB-KO) mice exhibit similar metabolic features as 
HFI patients [47, 48]. In these mice, chronic exposure 
to fructose resulted in growth retardation and death [47, 
48]. An acute, oral fructose load caused a rise in serum 
liver enzymes and intestinal injury, characterized by the 
destruction of apical villi and the presence of apoptotic 
cells in the duodenum and jejunum [48]. In addition, 
ALDOB-KO mice exposed to an oral fructose load showed 
decreased hepatic ATP and phosphate levels, and elevated 
serum urate concentrations [48]. Finally, oral fructose pro-
voked severe hypoglycemia in a dose-dependent fashion 
[48]. Exploration of the gluconeogenic pathway by a pyru-
vate tolerance test revealed a reduced, but not absent abil-
ity for gluconeogenesis [48]. This is remarkable given the 
absence of aldolase B, which not only affects fructolysis 
but also glycolysis/gluconeogenesis (Fig. 1). Furthermore, 
there was no residual aldolase A or C expression in the 
liver (Lanaspa, personal communication) and suggests that 
gluconeogenesis occurs in other tissues [49]. Some key 
enzymes of gluconeogenesis (i.e., phosphoenolpyruvate 
carboxykinase and glucose-6-phosphatase) were found to 
be upregulated in the livers of ALDOB-KO mice [48].

Although Fru-1P-mediated impairment of glycogen-
olysis was not specifically studied, the ALDOB-KO mice 
were characterized by an increased hepatic glycogen con-
tent after an oral fructose load [48]. Of interest, glycogen 
synthase activity—determined by the ratio of phospho-
rylated to total glycogen synthase—was increased [48], 
suggesting an enhanced glycogenesis. Of additional inter-
est, the increased hepatic glycogen content and decreased 
serum glucose and insulin were also observed in ALDOB-
KO mice that were not exposed to an acute oral fructose 
load [48]. This chronic feature could be due to the endog-
enous fructose production via the polyol pathway [4, 42] 
or, alternatively, an increased hepatic glucose uptake (see 
below).

Aldolase B knockout mice are characterized 
by an increased intrahepatic triglyceride content

In addition to the above-described metabolic features, 
ALDOB-KO mice chronically exposed to small amounts 
of fructose in the chow (~ 0.3%) displayed an increased 
amount of hepatic triglycerides, hepatic inflammation—
characterized by the presence of apoptotic and necrotic 
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cells, and diffuse macrophage infiltration—and signs 
of periportal fibrosis [47, 48]. Hepatic expression of 
enzymes involved in de novo lipogenesis (DNL), i.e., 
ATP-citrate lyase (ACL), acetyl-CoA carboxylase (ACC), 
fatty acid synthase (FAS), was greater in ALDOB-KO 
mice, suggesting that this pathway accounts, at least in 
part, for the increased hepatic triglycerides levels [48]. In 
addition, cytosolic glucokinase (GCK) was more abun-
dant in ALDOB-KO mice when compared to wild-type 
mice [48].

GCK converts glucose to glucose 6-phosphate (Glc 6P) 
in the liver, pancreas, and pituitary and is the first step in 
glycolysis. Thanks to its unique kinetic properties, GCK is 
a major regulator of hepatic glucose uptake and pancreatic 
insulin secretion [50]. In the post-absorptive state, hepatic 
GCK is bound to glucokinase regulatory protein (GKRP), a 
liver-specific protein. The GKRP-GCK complex resides in 
the nucleus and thus inactivates GCK [51, 52]. In the post-
prandial state, a rise in intracellular glucose facilitates the 
dissociation of GCK from GKRP and migration of GCK to 
the cytosolic space where it facilitates phosphorylation and, 
hence, storage of glucose. Of interest, Fru 1P is a very potent 
disruptor of the GKRP-GCK complex. Experimental studies 
have shown that only trace amounts of Fru 1P are required 
to dissociate GCK from GKRP [52–57]. Notably, intra-
hepatic Fru 1P concentrations in ALDOB-KO mice were 
also elevated after chronic exposure to only small amounts 
of fructose in the chow [48]. From these studies, it can be 
speculated that accumulation of Fru 1P in ALDOB-KO 
mice chronically fed small amounts of fructose induces dis-
sociation of the GKRP-GCK complex, which would explain 
the greater cytosolic GCK activity in ALDOB-KO mice. 
Consequently, hepatic glucose uptake is stimulated, thereby 
contributing to the reduced serum glucose and insulin levels 
in these mice. The metabolic fate of the glucose taken up 
by the liver can be several fold, among others an enhanced 
storage of glycogen and fat. Although the latter requires 
glycolysis (which appears to be blocked in case of aldolase 
B deficiency) and subsequent DNL, the pentose phosphate 
pathway (PPP)—a metabolic pathway that parallels glycoly-
sis—may serve as an alternative pathway to convert Glc 6P 
to G3P (Fig. 2). Of interest, a previous experimental study 
has shown that the PPP increases in parallel to DNL in rat 
fatty livers [58].

There are other biologically plausible mechanisms that 
could explain the upregulated DNL pathway leading to 
hepatic fat accumulation in ALDOB-KO mice. First, exper-
imental studies have shown that activation of the AMP-
deaminase pathway and formation of urate (Fig. 1) induces 
mitochondrial dysfunction, which results in downregulation 
of fatty acid oxidation and stimulation of DNL [59]. Second, 
carbohydrate-responsive element-binding protein (ChREBP) 
is activated upon intracellular phosphate depletion and 

stimulates expression of glucose-6-phosphatase and DNL 
genes [60, 61], all in accordance with the observations in 
ALDOB-KO mice [48].

Fig. 2  Hypothesized pathogenesis of hepatic fat accumulation in 
aldolase B deficiency. Accumulation of Fru 1P has several chronic 
downstream effects leading to fat accumulation denoted in yellow 
circled letters. ALDOB-KO mice fed a low-fructose diet (~ 0.3%) 
display increased hepatic Fru 1P concentrations. This also seems to 
be the case in adult HFI patients treated with a fructose-restricted 
diet, as can be deduced from an abundancy of circulating hypogly-
cosylated transferrin. Hepatic Fru 1P inhibits glycosylation of trans-
ferrin by impairment of MPI (A). Catalytic amounts of Fru 1P dis-
sociate GCK from GKRP in the nucleus, which allows migration of 
GCK toward the cytosolic space where it converts glucose to Glc 6P 
and, as a consequence, facilitates hepatic glucose uptake (B). The 
metabolic fates of an increased hepatic glucose uptake can be: (1) 
storage as glycogen (C) and (2) storage as fat via DNL with carbons 
and electrons derived from possibly the pentose phosphate pathway 
(PPP) (D). Malonyl-CoA, an intermediate of DNL, inhibits fatty acid 
beta-oxidation (and formation of β-OHB) through impairment of the 
mitochondrial fatty acid transporter CPTI (E). Of note, alternative 
mechanisms may contribute to the development of hepatic fat accu-
mulation in aldolase B deficiency as well, such as Fru 1P-induced 
formation of urate and activation of ChREBP, which both stimulate 
DNL (see text). Green arrows indicate observations in ALDOB-
KO mice. Blue arrows and blue cross indicate observations in HFI 
patients. Dashed arrow indicates multiple intermediate enzymatic 
steps that have not been visualized for simplicity purposes. ACC  
acetyl-CoA carboxylase, ACL ATP-citrate lyase, ALDOB aldolase B, 
β-OHB beta-hydroxybutyrate, CPTI carnitine palmitoyltransferase I, 
DHAP dihydroxyacetone phosphate, ER endoplasmic reticulum, Fru 
6P fructose 6-phosphate, FAS fatty acid synthase, Fru 1P fructose 
1-phosphate, Fru 1,6-P2 fructose 1,6-biphosphate, G3P glyceralde-
hyde 3-phosphate, Glc 6P glucose 6-phosphate, GAH glyceraldehyde, 
GCK glucokinase, GKRP glucokinase regulatory protein, M6P man-
nose 6-phosphate, MPI mannose-6-phosphate isomerase, NADPH 
nicotinamide adenine dinucleotide phosphate, PPP pentose phosphate 
pathway
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Inhibition of ketohexokinase protects ALDOB‑KO 
mice from metabolic derangements

The importance of Fru 1P in the pathogenesis of the meta-
bolic derangements as observed in ALDOB-KO mice was 
unequivocally demonstrated by inhibition of ketohexokinase 
(KHK), the enzyme that catalyzes the first step in fructose 
metabolism: the phosphorylation of fructose to yield Fru 
1P. In most mammals, including humans, KHK exists as 
two isoforms, A and C [62]. KHK-C has high affinity for 
fructose and is abundant in the liver, intestine, and kidney. 
In contrast, KHK-A has much lower affinity for fructose 
and is more ubiquitously expressed [63]. Nearly, all of 
the aforementioned metabolic abnormalities in ALDOB-
KO mice ameliorated when they were crossed with KHK 
knockout (KHK-KO) mice, i.e., both KHK-A and KHK-C 
[48]. Further, similar results were observed after treatment 
with osthole, a natural KHK inhibitor [64]. Fructose-loaded 
ALDOB-KO mice treated with osthole were protected from 
intrahepatic ATP depletion, hyperuricemia, rise in liver 
enzymes, and severe hypoglycemia [48]. In addition, ost-
hole treatment resulted in a decrease in the GCK cytosol/
nucleus ratio, indicative of more GCK bound to GKRP in 
the nucleus [48].

Importantly, ALDOB-KO mice were not protected from 
the above-mentioned metabolic abnormalities when crossed 
with KHK-A specific knockout mice [48]. In fact, the mice 
possessing only KHK-C resulted in an exacerbated pheno-
type [48]. This observation is likely explained by the fact 
that inhibition of KHK-A results in reduced metabolism of 
fructose in peripheral tissues and, hence, a greater supply 
to the liver, which is detrimental in case of aldolase B defi-
ciency. These findings suggest that inhibition KHK-C may 
serve as a therapeutic target that could make the fructose-
restricted diet redundant in HFI patients.

Recent advances in humans

Patients with HFI are characterized by an increased 
intrahepatic triglyceride content

Until recently, only anecdotal reports suggested that hepatic 
fat accumulation persists in HFI patients, despite a fructose-
restricted diet [6]. A recent cross-sectional observational 
study including 16 genetically diagnosed HFI patients 
reported a high prevalence of fatty liver, as assessed by 
ultrasound or hepatic magnetic resonance imaging [65]. 
This issue was recently more structurally addressed in 15 
adult HFI patients who were on a lifelong fructose-restricted 
diet, ranging from 0.3 to 7.0 grams of fructose per day (the 
average fructose intake of American adults ranges from 32 
to 75 grams per day [66]). Magnetic resonance imaging 

spectroscopy of the liver revealed that intrahepatic triglyc-
eride (IHTG) content was higher in HFI patients in compari-
son with 15 healthy age-, sex-, and BMI-matched individu-
als [67]. Although liver stiffness, a non-invasive marker of 
liver fibrosis, was not significantly different between both 
groups, one HFI patient displayed a liver stiffness measure-
ment compatible with liver fibrosis stage 3 or higher. Meta-
bolic profiling revealed that HFI patients were more glucose 
intolerant, as reflected by higher plasma glucose excursions 
during a standard 75-gram oral glucose tolerance test [67].

Further investigations to delineate the underlying mecha-
nism that leads to an increased IHTG content in HFI patients 
were limited due to the noninvasive nature of human studies. 
Nevertheless, the use of liver-specific plasma biomarkers 
allowed some insight. First, hypoglycosylated transferrin, 
a liver-specific protein, was more abundant in HFI patients, 
which is in line with previous studies [68, 69]. Experimental 
studies have shown that Fru 1P inhibits mannose-6-phos-
phate isomerase (MPI) activity, one of the first enzymes 
involved in the glycosylation process (Fig. 2) [70]. The 
higher levels of hypoglycosylated transferrin (yet within the 
normal range) therefore suggest that intrahepatic Fru 1P con-
centrations are higher in HFI patients than in controls, even 
on a fructose-restricted diet. This may be explained by the 
minute levels of ingested fructose (blocked by aldolase B) 
or, alternatively, by endogenous fructose production via the 
polyol pathway. Despite the suggestion of higher intrahepatic 
Fru 1P levels in HFI patients on a fructose-restricted diet, 
plasma uric acid concentrations were not different between 
both groups [67]. This finding is consistent with observa-
tions in ALDOB-KO mice, which only displayed increased 
plasma uric acid levels after an oral fructose load [48].

Second, plasma beta-hydroxybutyrate levels, a liver-spe-
cific biomarker of beta-oxidation, were significantly lower in 
HFI patients compared to healthy individuals [67]. Notably, 
DNL and beta-oxidation are reciprocally regulated. Malonyl-
CoA, a precursor of de novo synthesized fatty acids, inhibits 
the activity of the long-chain fatty acid transporter carnitine 
palmitoyltransferase I (CPTI). Consequently, the transport of 
long-chain fatty acids over the mitochondrial membrane is 
hampered and beta-oxidation is impaired [71]. It can there-
fore be concluded that the biomarker patterns in HFI patients 
are similar to the in-depth phenotyping of the ALDOB-KO 
mice (as illustrated in Fig. 2).

Variants in the GKRP gene show phenotypic 
similarities with ALDOB‑KO mice and HFI patients

Unfortunately, it is not possible to non-invasively measure 
the GKRP-GCK interaction as a potential explanation for 
the increased IHTG content in HFI patients, since this would 
require liver biopsies. Nevertheless, genetic epidemiology 
is a valuable tool in predicting the metabolic consequences 
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of increased GKRP-GCK disruption in humans [72]. 
Rs1260326 and rs789004 are common variants in the GKRP 
gene (GCKR), which are in strong linkage disequilibrium. 
The former is a functional variant that encodes a GKRP 
protein that dissociates from GCK more easily [73], com-
parable to the effect of Fru 1P on the GKRP-GCK complex. 
The previously reported associations of these common gene 
variants with cardiometabolic traits in the general population 
show some striking similarities with the metabolic abnor-
malities observed in ALDOB-KO mice and HFI patients 
(Table 1). First, variants in GCKR have been associated with 
reduced beta-hydroxybutyrate levels, pronounced DNL, and 
a greater IHTG content [74–77]. Further, these variants have 
been associated with lower fasting insulin concentrations 
[78, 79] and higher 2-h post-glucose load glucose levels 
[80], the former in agreement with ALDOB-KO mice [48] 
and the latter with HFI patients [67]. Of note, despite the 
consistently reported association between GCKR variants 
and increased plasma triglycerides [78, 79], HFI patients 
were characterized by normal plasma triglycerides levels 
[67]. This discrepancy may be explained by the fact that 
HFI patients were (relatively) metabolically healthy, i.e., 
non-(abdominally) obese [67]. We previously reported that 
GCKR interacts with metabolic health on plasma triglyc-
erides, i.e., the unhealthier the greater the effect on plasma 
triglycerides levels [81]. Finally, a recent meta-analysis sug-
gested that the common variants in GCKR protect against 

chronic kidney disease, but predisposes to cardiovascular 
disease (CVD) [82]. These relevant clinical endpoints have 
not been addressed in HFI patients chronically treated with 
a fructose-restricted diet and therefore deserve further study.

Implications for the current epidemic 
of fructose overconsumption

Since the industrial revolution, the intake of fructose in the 
USA has risen dramatically [66]. Fructose—which has a 
sweeter taste than glucose—is often added as a sweetener 
(e.g., as high fructose corn syrup) to processed foods. Given 
the parallel increase in fructose consumption and the cur-
rent obesity epidemic and its sequelae (dyslipidemia, type 
2 diabetes mellitus [T2DM], gout, and CVD) in Western 
society, fructose has been implicated as a major contributing 
factor [83–86].

Non-alcoholic fatty liver disease (NAFLD), a histological 
spectrum ranging from simple steatosis to steatohepatitis, 
fibrosis, and cirrhosis, is another frequently encountered 
phenomenon in obese individuals [87]. NAFLD may not 
only progress to end-stage liver failure and hepatocellular 
carcinoma, and it has also been associated with new-onset 
T2DM and CVD [88, 89]. The pathogenesis of NAFLD 
involves a complex interaction between genetic factors and 
unhealthy lifestyle habits [90].

Table 1  Cardiometabolic 
features in ALDOB-KO mice, 
HFI patients, and human 
carriers of common variants in 
the GCKR gene

Arrows indicate the direction of association, not the effect size
a Observations in ALDOB-KO mice fed a low-fructose diet (~ 0.3%)
b Observations in adult HFI patients chronically treated with a fructose-restricted diet
c Common variants in rs1260326 and rs780084, which encode a GKRP protein that binds glucokinase less 
effectively
d Aspartate transaminase (AST) and alanine transaminase (ALT)
e De novo lipogenesis (DNL) is assessed by hepatic expression of key enzymes (ALDOB-KO mice) and 
stable isotopes (GCKR)
f eGFR: estimated glomerular filtration

ALDOB-KO 
 micea

HFI  patientsb GCKRc References

Intrahepatic triglycerides ↑ ↑ ↑ [48, 65, 67, 105]
Serum AST/ALTd ↑ ↑ ↑ [48, 65, 106]
DNLe ↑ ? ↑ [48, 76]
Serum beta-hydroxybutyrate ? ↓ ↓ [67, 74]
Intrahepatic glycogen ↑ ? ? [48]
Serum glucose ↔ ↔ ↓ [48, 67, 78–80]
Serum glucose, 2 h post-glucose load ? ↑ ↑ [48, 67, 80]
Serum insulin ↓ ↔ ↓ [48, 67, 79, 80]
Serum urate ↔ ↔ ↑ [48, 67, 107, 108]
Serum triglycerides ? ↔ ↑ [65, 67, 78, 79, 81]
eGFRf ? ? ↑ [82]
Coronary artery disease ? ? ↑ [82]
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Experimental studies in rodents and humans have une-
quivocally demonstrated that fructose overfeeding leads to 
an increased hepatic fat content [91–95] and many symp-
toms of the metabolic syndrome [96]. The mechanism by 
which fructose causes hepatic fat accumulation can be 
directly by serving as a substrate for DNL. Further, fructose 
can also indirectly enhance DNL via the hitherto mentioned 
mechanisms: (1) Fru 1P-induced disruption of the GKRP-
GCK complex, which facilitates hepatic glucose uptake and 
consequently DNL (Fig. 2); (2) Fru 1P-induced ATP deple-
tion and urate formation, which stimulates DNL [27–29]; 
and (3) Fru 1P-induced intracellular phosphate depletion, 
which activates ChREBP, a transcription factor with mul-
tiple downstream effects, among other stimulation of DNL 
[60, 61]. Of note, these processes have been observed in 
humans with normal aldolase B function [97–99].

The recent studies in ALDOB-KO mice and HFI patients 
suggest that the direct lipogenic effects of fructose do not 
necessarily play a role in the pathogenesis of fructose-
induced NAFLD [48, 67]. Moreover, they suggest that the 
accumulation of intermediates of fructolysis, i.e., Fru 1P, 
is a key element in the pathogenesis of fructose-induced 
NAFLD.

From these findings, it can also be deduced that inhibition 
of Fru 1P formation by blocking upstream KHK activity 
may be a novel therapeutic modality, not only for HFI, but 
also for fructose-induced NAFLD. Indeed, the fatty liver 
phenotype in fructose-fed mice improved after treatment 
with liver-specific small interfering RNA (siRNA) targeting 
KHK expression [100]. Further, previous experimental stud-
ies have demonstrated that fructose-fed KHK-KO mice were 
protected from hepatic fat accumulation and other metabolic 
abnormalities, such as obesity and hyperinsulinemia, when 
compared to wild-type mice [101–103]. Again, analogous 
to the observations in ALDOB-KO [48], specific knock-
out of KHK-A resulted in an exacerbation of the metabolic 
abnormalities, including increased hepatic fat accumulation 
[102, 103]. Of interest, in humans, a loss of KHK results in 
essential fructosuria (OMIM #229800) [39]. This benign 
condition is not known to provoke any clinical symptoms 
[39] and, hence, emphasizes the therapeutic potential of 
KHK inhibition.

Future perspectives

The recent studies in aldolase B-deficient mice and HFI 
patients have contributed to our understanding of the patho-
genesis of HFI and fructose-induced NAFLD [48, 67]. There 
are, however, several issues that deserve further study.

First, experimental studies are warranted to establish the 
exact roles (and their relative contributions) of the GKRP-
GCK complex, urate, and ChREBP as potential mediators 

in the pathogenesis of hepatic fat accumulation in aldolase 
B deficiency. Furthermore, although the recent studies have 
convincingly identified Fru 1P as the key driver behind 
hepatic fat accumulation in aldolase B deficiency, the exact 
contribution of endogenous fructose production (via the 
polyol pathway) to the accumulation of intrahepatic Fru 1P 
remains to be elucidated. Future studies are warranted to 
determine to what extent gluconeogenesis and glycolysis are 
functional in aldolase B-deficient livers, and which alterna-
tive pathways (e.g., PPP) are involved. Long-term follow-up 
of a large cohort of HFI patients is needed to study whether 
these patients are protected from chronic kidney disease and 
predisposed to CVD, similar to individuals carrying com-
mon variants in GCKR [82]. Finally, clinical studies are 
required to demonstrate whether KHK inhibition will: a) 
replace the fructose-restricted diet as a treatment for HFI 
and b) be efficacious in the treatment of fructose-induced 
NAFLD in the general population. Interestingly, Huard et al. 
[104] recently reported the discovery of a small molecule 
that selectively inhibits KHK activity in vitro and in vivo 
more effectively than osthole.

Concluding remarks

HFI is a rare inborn error of fructose metabolism. Recent 
studies in ALDOB-KO mice and HFI patients have pro-
posed a prominent role for Fru 1P in the pathogenesis of 
hepatic fat accumulation, and suggest that an increased dis-
sociation of GCK from GKRP is involved. These findings 
have therapeutic implications for not only HFI, but also for 
fructose-induced NAFLD in the general population. These 
studies clearly demonstrate that fructose-induced NAFLD 
can benefit from the insight gained from rare inborn errors 
of metabolism, and vice versa.
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